Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nEm SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 42 (2005) 6433-6456

Analytical solutions for single- and multi-span
functionally graded plates in cylindrical bending

Z.G. Bian ?, W.Q. Chen ***, C.W. Lim ¢, N. Zhang ¢

& Department of Civil Engineering, Zhejiang University, Hangzhou 310027, PR China
® State Key Lab of CAD and CG, Zhejiang University, Hangzhou 310027, PR China
¢ Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China
4 School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore

Received 19 July 2004; received in revised form 11 April 2005
Available online 8 June 2005

Abstract

A recently developed plate theory using the concept of shape function of the transverse coordinate parameter is
extended to determine the stress distribution in an orthotropic functionally graded plate subjected to cylindrical bend-
ing. The transfer matrix method is presented to derive the shape function. The equations governing the plate deforma-
tion are then solved analytically using the transfer matrix method for arbitrary boundary conditions. For a simply
supported functionally graded plate, a comparison of the present solution with the exact elasticity solution, the first-
and third-order shear deformation plate theories is presented and discussed. It is demonstrated that the present method
yields more accurate stresses than the first- and third-order shear deformation theories. The effect of boundary condi-
tions and inhomogeneity of material on the displacements and stresses in functionally graded plates are investigated. A
multi-span functionally graded plate with arbitrary boundary conditions is further considered to demonstrate the effi-
ciency of the present method.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) were first developed by a group of Japanese scientists to address
the needs of aggressive environment of thermal shock (Rabin and Shiota, 1995). Now, the concept of FGM
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has been widely explored in various engineering applications including electron, chemistry, optics, biomed-
icine, etc. (Koizumi, 1997). FGMs are usually more superior to the conventional laminated materials
because of no discernible internal seams or boundaries, and no internal stress peaks are caused when exter-
nal loads is applied and thus failure from interfacial debonding or from stress concentration can be avoided
(Wu et al., 1996; Li and Weng, 2002). On the macroscopic scale, FGMs are anisotropic, inhomogeneous
and possess spatially continuous mechanical properties, which bring the conventional mechanics into a
brand-new field.

Heretofore, kinds of approximate theories have been extended to investigate the mechanical behavior of
functionally graded plates (FGPs). For example, Aboudi et al. (1995) took the microstructural and macro-
structural effects into account and developed a new kind of higher-order shear deformation plate theory
for FGMs. Praveen and Reddy (1998) investigated the response of FGPs making use of a plate finite element
(FE) that accounts for the transverse shear strains, rotary inertia and moderately large rotations in the von
Kédrman sense. Employing the first-order shear deformation Mindlin plate theory, Reddy et al. (1999) studied
the axisymmetric bending and stretching of functionally graded solid and annular circular plates. On the basis
of a higher-order shear deformation plate theory, Reddy (2000) further developed FE formulations for thick
FGPs and studied the nonlinear dynamic response of FGPs subjected to a suddenly applied uniform pressure.
Reddy’s third-order shear deformation plate theory was also employed by Cheng and Batra (2000) to study
the buckling and steady state vibrations of a simply supported isotropic polygonal FGP, and a correspon-
dence between eigenvalues of such plates and those of membranes is established. Associating a second-order
shear deformation plate theory with a laminated model, Liu et al. (2003) analyzed the dispersion of waves and
characteristic wave surfaces in functionally graded piezoelectric plates with a FE method. Based on Reissner—
Mindlin plate theory, Croce and Venini (2004) conducted a static analysis of rectangular FGPs using FE
method. The FE method was recently used by Liew et al. (2004) to optimize the shape control of functionally
graded smart plates by introducing a stochastic zeroth-order optimization algorithm. Based on the first-order
shear deformation plate theory, Wu (2004) studied the thermal buckling of a simply supported moderately
thick rectangular FGP. Qian et al. (2004) incorporated a higher-order shear and normal deformable plate
theory with a meshless local Petrov—Galerkin method to analyze the static deformation and free or forced
vibration of a thick rectangular FGP. More recently, Ma and Wang (2004) studied the axisymmetric bending
and buckling problems of circular FGPs, and presented the relationships between solutions based on the clas-
sical plate theory and those based on a third-order shear deformation plate theory.

As is known to all, the classical plate and shell theories can be used to analyze thin plates and shells. For
example, based on Love’s shell theory, Lam and Li (1997) and Li and Lam (2001) investigated the free
vibrations of rotating thin truncated circular homogeneous and laminated conical shells. Such theories,
however, will produce unsatisfactory results in case of a low length-to-thickness ratio or a high ratio of elas-
tic modulus to shear modulus, owing to the neglect of transverse shear deformation. For laminated plates
and shells, even higher-order theories cannot give satisfactory stress estimation. A generalized refined the-
ory was recently suggested by Soldatos and Watson (1997a,b) and Soldatos and Liu (2001), into which
shape functions were incorporated to make sure that the calculated transverse shear stresses are continuous
across the interfaces. The accuracy of this new theory in predicting stress distributions was demonstrated
through numerical comparison.

In this paper, the above-mentioned plate theory (referred to as Soldatos plate theory hereafter) is
extended to investigate the cylindrical bending behavior of FGPs. A laminate model is employed to approx-
imate the FGP by assuming material homogeneity within each thin layer (Chen and Ding, 2000; Chen et al.,
2003). Shall the method of Soldatos and Watson (1997a,b) and Soldatos and Liu (2001) to determine the
shape function be employed, a total of 2N simultancous equations (N is the layer number of the approx-
imate laminate model of FGP) needs to be solved. Hence, it becomes very time-consuming when the num-
ber of divided layers increases. To overcome this difficulty, the shape function is derived by using the
transfer matrix method (TMM), which was originally proposed by Thomson (1950) and followed by many
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others (Haskell, 1953; Pestel and Leckie, 1963; Munjal, 1975, 1993; Folds and Loggins, 1977; Stepanishen
and Strozeski, 1982; Nayfeh, 1991). A detailed description of the analysis procedure can be found in Khdeir
(1996). The superiority of TMM is very obvious, for example, in the present determination of shape func-
tion, it allows us to always solve only a system of two equations regardless of how many layers are involved.
The governing equations in Soldatos plate theory are also solved within the framework of TMM. For sim-
ply supported boundary conditions, a comparison of the present solution is made with the exact elasticity
solution and the solutions obtained from the first- and third-order shear deformation plate theories.
Numerical examples are presented to show the effect of boundary conditions and material inhomogeneity
on the elastic field in functionally graded plates.

The final focus of the present paper is in the investigation of deformation of multi-span FGPs. Multi-span
plates are frequently encountered in many engineering fields and thus it is important to understand their re-
sponses under various loading conditions. Generally, multi-span plates can be treated as plates with internal
line supports (Zhou, 1994; Kong and Cheung, 1995). Cheung and Zhou (2000) used Rayleigh-Ritz method
with a set of static beam functions to analyze the vibrations of orthotropic rectangular plates with elastic inter-
mediate line-supports. Li (2003) applied an exact approach to determine the natural frequencies and mode
shapes of a rectangular plate with a line concentrated mass and a line-spring support or with a line-spring-
mass system. Xiang et al. (2002a,b) developed a Levy-type solution method to study the vibration of multi-
span rectangular plates. In their analysis, the governing partial differential equation was first transformed into
an ordinary differential equation by assuming a sinusoidal variation along the direction with two simply sup-
ported edges and then the ordinary differential equation was written in the form of a system of simultaneous
equations of first-order, of which the solution could be easily obtained. Their procedure is very similar to
TMM employed here. In the open literatures, however, few studies addressed the static deformation of mul-
ti-span plates, although it is of immense value to designers. In this paper, the TMM is further extended to
obtain the analytical deformation solution of a multi-span FGP with arbitrary boundary conditions.
Although TMM can be readily used to analyze plates with any number of spans, a three-span FGP is chosen
as a numerical example to investigate the distributions of displacements and stresses in the span direction.

2. Basic equations for cylindrical bending

Consider an orthotropic FGP with an infinite extent in y-direction, as shown in Fig. 1. The plate is in a
state of cylindrical bending so that only two displacements U and W, in x- and z-directions respectively, are
nonzero and both are independent of the coordinate y. The thickness and length in x-direction are denoted
as h and L respectively. We assume that the plate is arbitrarily inhomogeneous in the thickness direction,
i.e. all elastic constants c;; are arbitrary functions of z.

According to Soldatos and Watson (1997a), the displacement field can be taken as:

W0 =w()
dw(¢)

U0 =) = =g+ a00(0) (1)

h

Fig. 1. Cartesian coordinates and plate geometry.
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where ¢ = x/h, { = z/h, and ® = @ /h, here O represents any one of U, W, u, w and ¢,. Obviously, # and w
are dimensionless displacements in the middle plane { = 0, and 0, denotes the transverse shear strain in the
same plane. @, is the dimensionless shape function to be determined. To make the displacement field in Eq.
(1) physically meaningful, it is assumed that (Soldatos and Watson, 1997a)

_ do,
¢X|;:O = 07 dC =1 (2)
(=0

It can be shown that the above Soldatos theory degenerates to the classical plate theory, the first- and third-
order shear deformation plate theories, by assuming @, = 0, { and {(1 — 4%*/3) respectively.
The strain field corresponding to Eq. (1) can be obtained as

du ,d*w de, do
XX — 12 ST _x_7 ‘zxzex 2
=g tgE T g ¢ dt (3)

By = &: =&y =&, =0

For an orthotropic FGP, the generalized constitutive relations are:

azx = Eé6gzx = 0038

where 6,; = 6;/c}, and ¢; = ¢;;/ch,, in which ¢/, is the elastic constant on the bottom surface ({ = 0.5).
Consider the FGP subject to a normal and downward load ¢(&) on its top surface, as shown in Fig. 1. In
light of the principle of the minimum potential energy, the equations of equilibrium can be derived as:

I de B Cyq4

dn, d’M, g dme
- b dé = Qx (5)

where the generalized resultant forces are defined by

0.5 0.5 d@ 0.5 0.5
N)c == / 6xx dC» Qx = / Jazx da Mx - / 6xxCdC7 Mz = / (Z)xaxx dé’ (6)
-0.5 0.5 dC ~0.5 ’ —0.5

Meanwhile, the boundary conditions at ¢ =0 and & =a = L/h are
N, =0 or u prescribed; M? =0 or 0, prescribed

dd—A? =0 or w prescribed; M, =0 or ?1_2} = (0 prescribed @
Three typical boundary conditions are as follows:
Simply supported(S): N, =M!=w=M,=0
dMm,
Free(F): N,=M!= Q@ M, =0 (8)
Clamped(C): u=0,=w= dw =0
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3. Determination of the shape function

A proper shape function plays a significant role in improving the accuracy of the stress analysis. In
Soldatos plate theory, the shape function @, is derived from the following three-dimensional equation of
equilibrium

0G,, 00,
¢ ol

Since the plate under consideration is inhomogeneous along the thickness, it is very difficult to deal with
such a case directly, except for some particular circumstances. Here, an approximate laminate model is
employed. In this model, the FGP is evenly divided into 2N thin layers, so that each layer can be regarded
as a homogeneous layer. In the following analysis, the material constants of each layer are assumed to take
the corresponding values at the mid-plane of that layer.

In view of Egs. (3), (4) and (9), one can obtain the following equation within the ith layer

2 2 3 2_
063 dd(gx 0, = 1 (pii)((ii; ((116 +35u

where the superscript (/) corresponds to the ith layer of the laminate model. The special solution of Eq. (10)
can be taken as (Soldatos and Watson, 1997a)

u=A cos(B¢), w=HBsin(B¢), 0,=C cos(BE) (11)

where 8 = n/a.

According to the treatment in Soldatos and Watson (1997a), the number of equations to be solved ulti-
mately increases with increasing number of layers. Thus, if the material property of FGP varies distinctly
along the thickness direction, for which a large number of layers are necessary to assure accuracy of the
laminate model, the determination of shape function will be very time-consuming. In the following, we will
adopt TMM to improve the efficiency of analysis.

Substituting Eq. (11) into Eq. (10) and rearranging the equations yield a system of first-order equations

=0 9)

(10)

diCXi =TX; — BBLP; + AP; (12)
where X; = [p!" ,(Z) 1", (}5 =o'dpl/d¢, 4= A4'/C', B=B'/C', and
0 1/ 0
T = 2 (i) TP { 2 (0} (13)
B 0 By

The solution to Eq. (12) is (Pestel and Leckie, 1963):

X;({) = exp[Ti({ — o)) - Xi(Gio) — B{/S exp[Ti({ — T)]ﬂTdf}P,

Gio

+A{/é exp[T,;({ — r)]dr}PI-, (Lo <L) (14)

Gio

where (;o= (i — 1)/(2N) — 0.5 and {;; = i/{(2N) — 0.5. B
The continuity of displacement U and shear stress o., at each fictitious interface requires @, and ¢, be
continuous there, which in turn yields

Xi(Gin) = HiyX;(C0) — BK;; +4di; (i = ) (15)
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where the 2 x 2 matrices H,;, K, ;, and J,; are defined by

K, = ‘_{H,-,M [ et —cnﬁcd@-Pk} (16)

Sk,0

Jij = . » {Hlykﬂ '/M CXP[Tk(Ck,l - C)]dC'Pk}

Sk,0

The boundary condition 6.,|._., 5 = 0 is equivalent to ¢,|, = 0. Combining it with Eq. (2) yields

—£0.5
Hy, —Ky, I oW (-0.5) 0
H%/l,l _K12V,1 Jzzv.l B = O‘gN) 1 (17)

2 2 sz
0 K2N4N+1 _J2N,N+1 4 2N, N+1

where H Z I K}c ;> and J};, , denote the elements of the matrices Hy.;, K;; and J;;, respectively. From Eq. (17),
the value of shape function at the top surface is determined and those at any other position can then be
evaluated from Eq. (14).

4. FGP in cylindrical bending

The transfer matrix method described in the previous section is also employed to solve the governing
equations of Soldatos plate theory. First, we rewrite Egs. (3)—(6) in the following form:

dv
D—=7ZV+S 18
oIV (18)
where V=[@uwl, I', N, T M M,)" and S = (q/c%)[G, +d, 01.7]", in which I, =dw/d¢ and T=
dM . /dé. The expressions for matrices D and Z are given in Appendix A.
The solution to Eq. (18) is

V(&) =exp(¢D'Z) - V(0) — /0g exp[(¢ —1)D'Z] - D'S(7)dt (19)

Setting £ = a in Eq. (19) establishes a relationship between the vector V at ¢ =0 and & = ¢. Imposing the
boundary conditions in Eq. (8) leads to a set of solvable algebraic equations, from which one can determine
V(0) for the three typical boundary conditions. The vector at any position, V(¢), is then calculated accord-
ing to Eq. (19). The stress field is obtained ultimately by the virtual of Egs. (3) and (4).

5. Multi-span FGP

Finally we investigate an FGP of multiple spans along the x-direction, as shown in Fig. 2. For a multi-
span FGP, the shear force T is discontinuous at internal supports. Hence, we shall designate 7, and T} to
the values of 7 at the left side and right side of the ith support. The vectors V; and V; are also introduced
correspondingly.

Without loss of generality, we assume each span has the same length a. From Eq. (19), we obtain:

Vi =LV/ +R (20)
where L = exp(aD~'Z), and R = i exp[(a —1)D'Z] - D'S(1) dx.
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Fig. 2. Diagrammatic sketch of a multi-span FGP.

To implement the analysis, a new vector is introduced

V=[a w 0, T, N, 0 M* M.]" (21)
By making use of w = 0 at internal supports, we obtain:

1 ~
T:l:_Lf(ervl*I_Rz) (121727,}’[—1) (22)
26

V,=L-V_,+R (i=12,....n—1) (23)
where L;; and R; are elements of the matrix L and the column R respectively, L, is a 1 X 8 row matrix con-
sisting of the elements on the second row of matrix L, and 7 is the number of span. The expressions for L
and R are listed in Appendix A.

Combining Eq. (23) with Eq. (20), yields:

Vi =(L-Ly1) Vot LTy +L R, +R (24)
where En_l = (Ii)"_l, ﬁn_l = {Zg:nfz(i)k} . l~2, and L. is an 8 X 1 column matrix consisting of the ele-

ments on the sixth column of the matrix L. Applying the boundary conditions in Eq. (8) into Eq. (24), leads
to a system of algebraic equations that completely determines V, and 7',_,. By the virtue of Egs. (22) and
(23), V; and T/ at each support can be obtained, from which we then have

Vi=V,+[0 0 0 0 0 77 0 0] (25)
Finally, V(&) in every span can be determined from Eq. (19).

6. Numerical examples

First, the present TMM formulations are verified by examining the numerical examples considered by
Soldatos and Watson (1997a), for which identical results have been obtained. Second, although Soldatos
and Watson (1997a,b) and Soldatos and Liu (2001) have made meaningful comparisons between Soldatos
plate theory and the elasticity solution methods, here calculation is presented for a two-layered plate sub-
jected to a uniformly distributed lateral load (Vel and Batra, 2001). The material and geometric properties
can be found in Vel and Batra (2000). As we can see from Table 1, the present results are very satisfactory
as compared with the elasticity solution, denoted as VB in the table, in Vel and Batra (2001), who employed
the Eshelby-Stroh formalism (Vel and Batra, 2000).

Next, we investigate the deformation of single-span FGPs. In the following numerical examples, a
mechanical loading ¢ = ¢;sin(f¢) applied on the top surface is considered. As regards the distribution of
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Table 1
Comparison of a two-layered plate subjected to various boundary conditions
Lih=4 c-C C-F (cantilever) C-S

VB Present VB Present VB Present
100E 22 U(0.75a, —0.5)/(q1 L) —2.283 —2.537 32.453 31.670 —4.702 —4.634
100E 74> W(0.5a,0)/(q,L*) 3.212 2.939 19.132 18.550 4.257 4.089
1P, (0.5a,—0.5)/(q,L?) —0.131 —0.121 0.189 0.190 —0.191 —0.180
1P6,:(0.75a,0.5)/(q, L?) 0.341 0.359 —0.353 —0.354 1.336 1.349
ho..(0.25a,0.25)/(q,L) 0.509 0.547 1.589 1.644 0.717 0.776
ho-,(0.75a,0.25)/(q, L) —0.509 —0.547 0.602 0.549 —0.332 —0.320
0..(0.5a,—0.25)/q ~0.938 ~0.939 —0.935 ~0.939 —0.940 ~0.939

material properties, there are several models in literature (Delale and Erdogan, 1988; Fuchiyama and Noda,
1995; Liu et al., 1999; Chen et al., 2002). Here we consider the following typical model (Chen et al., 2004a):

Y = POyl py (26)

where y = ({ + 0.5)", ¥ represents an arbitrary material constant of FGM, while ¥° and ¥' are the corre-
sponding ones for two homogeneous materials. The material constants of the two homogeneous materials
considered in this paper are listed in Table 2. Fig. 3 shows the variations of the elastic constant ¢;; along the
thickness direction for several values of .

The through-thickness distribution of shape function @, is demonstrated in Fig. 4. Different from the
conventional first- and third-order shear deformation plate theories, in which the transverse shear deforma-

Table 2

Material constants of two homogenous materials (units: 10' N/m?)

Property €11 €12 €13 22 €23 €33 C44 Css Co6
o 40.17 0.33 0.34 1.07 0.27 1.07 0.50 0.70 0.50
y! 15.98 0.47 0.47 1.20 1.20 1.20 0.55 0.42 0.42

Fig. 3. Variation of elastic constant ¢, through thickness.



Z.G. Bian et al. | International Journal of Solids and Structures 42 (2005) 6433-6456 6441

05
04 f
03
02

01
¢ of
01r
02

03|

04t

0 01 02 03 04
Py

0.5 - X X
-04 -03 -02 -01
Fig. 4. Variation of shape function @, through thickness.

tion remains invariant once the displacement field is assumed, the shape function in Soldatos plate theory
changes with x. This self-adjustable property makes Soldatos plate theory more suitable for analyzing

FGPs.

Figs. 5-10 illustrate a comparison of numerical solutions among the present method, the exact elasticity
theory, the first- and third-order shear deformation plate theories. The exact results are obtained by a state-
space method, which is outlined in Appendix B for the readers’ convenience. The parameter « in the mate-
rial model, Eq. (26), is assigned 0.5, and only simply-supported conditions are considered in these numerical

examples.

The through-thickness distributions of transverse displacement w, normal stress 6,, and shear stress o,
are shown in Figs. 5-7 respectively. The length-to-thickness ratio is taken as L/h = 6. Since all the simplified
theories considered here (Soldatos plate theory, the first- and the third-order shear deformation plate
theories) do not have transverse displacement w varying with the thickness coordinate, the results of the
simplified theories are somewhat different from the actual situation as predicted from the exact elasticity

-05 . . . . . . . . .
!
04 /A
I/
03} O First-order plate theory /,’
« Third-order plate theory /
02} — Present theory i
01} -~ Exact theory I,’
/
¢ of 4
01f /
1
1
02f /
1
!
03} /
II
0.4 J
I’
05 R R R R R R R R R
84 85 86 87 88 89 9 91 92 93 94

cuW(al2,¢)la,

Fig. 5. Distribution of transverse displacement predicted by different theories (L/h = 6).



6442 Z.G. Bian et al. | International Journal of Solids and Structures 42 (2005) 6433-6456

-05
04}
03}
02}
01}

¢ oof

01}

O First-order plate theory
02}  Third-order plate theory
— Present theory

03r -~ Exact theory

04}

0'540 33 26 -19 -12 5 2 9 6 23

o,(al2, ) g,

Fig. 6. Distribution of normal stress predicted by different theories (L/h = 6).
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Fig. 7. Distribution of shear stress predicted by different theories (L/h = 6).
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Fig. 8. Distribution of transverse displacement predicted by different theories (L/h = 3).
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Fig. 9. Distribution of normal stress predicted by different theories (L/h = 3).
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Fig. 10. Distribution of shear stress predicted by different theories (L/h = 3).

solution, as shown in Fig. 5. However, the transverse deflection obtained by the present method and that by
the third-order shear deformation plate theory are almost identical, and both are close to the average value
of that obtained by the exact solution. On the contrary, the first-order shear deformation plate theory
underestimates the transverse deflection because the first-order shear deformable plate is generally stiffer
than the actual plate due to the additional constraints assumed on deformation. Fig. 6 shows excellent
agreement between the present solution and the exact solution. Such a conclusion is demonstrated explicitly
in Fig. 7, where the first-order shear deformation plate theory only predicts the average value of the exact
shear stress, and the peak position of shear stress predicted by the third-order shear deformation plate the-
ory has an obvious departure from the exact one.

The results shown in Figs. 8-10 are for a smaller length-to-thickness ratio, i.e. L/h = 3. Similar conclu-
sions can be reached except that the deviation of the third-order theory from the exact solution becomes a
little more obvious. Thus, when compared to the first- and third-order shear deformation plate theories, the
present method predicts the stress distribution more accurately if the plate is inhomogeneous or has a small
length-to-thickness ratio.
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Fig. 11. Through-span distributions of deflection for different values of «.
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Fig. 12. Through-span distributions of normal stress for different values of .
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Fig. 13. Through-span distributions of shear stress for different values of «.
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Fig. 14. Through-thickness distributions of normal stress for different values of .

-0.5

-0.4

-0.3

-0.2 x k=2

-0.1
o
01
0.2
03
0.4

0.5

0 02 04 06 08 1 12
ox(al4, ) /g,

Fig. 15. Through-thickness distributions of normal stress for different values of .

Fig. 16. Deflection of an FGP with SS boundary conditions.
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Fig. 19. Deflection of an FGP with CF boundary conditions.
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Fig. 20. Normal stress of an FGP with SS boundary conditions.

Fig. 22. Normal stress of an FGP with CC boundary conditions.
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Fig. 24. Shear stress of an FGP with SS boundary conditions.

Fig. 25. Shear stress of an FGP with CS boundary conditions.
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After checking the reliability, the present method is now applied to investigate the effect of x on the dis-
tribution of displacements and stresses. Figs. 11-15 display the numerical results for different values of x. In
the calculation, L/h = 4 is taken and CC boundary condition is assumed. Several conclusions can be drawn
from these figures. First, one can choose appropriate distribution of displacements and stresses for a prac-
tical engineering purpose by changing « (the inhomogeneity parameter of FGM). Second, the effect of x on
deflection is more significant than that on stresses, and the effect of k on the shear stress is more significant
than that on normal stresses. Finally, positions of peak shear stresses in invariable with respect to x, as
shown in Fig. 15.

The effect of boundary conditions on displacements and stresses is studied and the results are shown
spatially in Figs. 16-27, for which the length-to-thickness ratio is L/ = 4 and the inhomogeneity parameter
isk=1.

Finally, the proposed analysis is employed to investigate the behavior of a three-span FGP with k = 1.
Each span is subjected to the same loading ¢ = ¢;sin(f¢) and the length-to-thickness ratio of each span
plate is assumed as 4. The results are shown in Figs. 28-30.

Fig. 26. Shear stress field of an FGP with CC boundary conditions.

Fig. 27. Shear stress of an FGP with CF boundary conditions.
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Fig. 28. (a) Distribution of deflection of a 3-span FGP with SS boundary conditions. (b) Distribution of deflection of a 3-span FGP
with SF boundary conditions. (c) Distribution of deflection of a 3-span FGP with FF boundary conditions. (d) Distribution of
deflection of a 3-span FGP with CS boundary conditions. (e) Distribution of deflection of a 3-span FGP with CC boundary conditions.
(f) Distribution of deflection of a 3-span FGP with CF boundary conditions.
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Fig. 29. (a) Distribution of normal stress of a 3-span FGP with SS boundary conditions. (b) Distribution of normal stress of a 3-span
FGP with SF boundary conditions. (¢) Distribution of normal stress of a 3-span FGP with FF boundary conditions. (d) Distribution
of normal stress of a 3-span FGP with CS boundary conditions. (e) Distribution of normal stress of a 3-span FGP with CC boundary
conditions. (f) Distribution of normal stress of a 3-span FGP with CF boundary conditions.




6452 Z.G. Bian et al. | International Journal of Solids and Structures 42 (2005) 6433-6456

> 0,(08)/q;
O, 4
2 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12
a 3
O'ZX(O, 5)/q1

rwNROR NG

f ¢

Fig. 30. (a) Distribution of shear stress of a 3-span FGP with SS boundary conditions. (b) Distribution of shear stress of a 3-span FGP
with SF boundary conditions. (c) Distribution of shear stress of a 3-span FGP with FF boundary conditions. (d) Distribution of shear
stress of a 3-span FGP with CS boundary conditions. (e) Distribution of shear stress of a 3-span FGP with CC boundary conditions. (f)
Distribution of shear stress of a 3-span FGP with CF boundary conditions.
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7. Conclusion

The novel plate theory proposed by Soldatos and Watson (1997a) is extended in this paper to study the
static behavior in single- and multi-span FGPs subjected to cylindrical bending with arbitrary boundary con-
ditions. A transfer matrix method is employed to determine the shape function and it is very efficient because
the order of the set of equations to be solved ultimately remains unaltered even if the number of divided lay-
ers increases for the sake of higher accuracy. The governing equations of Soldatos plate theory are also
solved by the transfer matrix method, which deals excellently with arbitrary boundary conditions. In addi-
tion to the study of Soldatos and Watson (1997a,b) and Soldatos and Liu (2001), a new example, i.e. a two-
layered plate in cylindrical bending subjected to various boundary conditions, is considered in this paper and
comparison with the elasticity solution (Vel and Batra, 2001) does validates the present theory.

The analysis has been extended to analyze multi-span FGPs. Comparison of the present solution with
the exact elasticity solution shows the Soldatos plate theory usually yields more accurate stresses than
the first- and third-order shear deformation plate theories when analyzing inhomogeneous plates or plates
with a high length-to-thickness ratio.

Numerical examples show that stresses in FGPs vary smoothly through the thickness, thus preventing
failures due to interfacial debonding or stress concentration commonly occurs in conventional laminated
materials. Moreover, FGMs are more designable. For example, Fig. 15 shows that the position of stress
peak can be chosen by taking a proper value of k. Such features endows FGPs a bright future application
in electron, chemistry, optics, biomedicine, etc. The paper also extends the method to investigate multi-span
plates and new numerical solutions have been obtained and discussed.

In this paper, only a one-dimensional problem is considered, i.e. plates in cylindrical bending. However,
when incorporated with other methods, the present method can be extended to analyze two-dimensional
plate problems. For example, for a rectangular plate with a pair of opposite edges simply supported, we
can first expand the mechanical qualities in terms of Fourier series in the direction perpendicular to the
simply supported edges. Then, for the reduced governing equations, we can employ the Transfer Matrix
Method. Xiang et al. (2002a,b) have presented such an analysis of isotropic plates based on the classical
plate theory and Mindlin plate theory.
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Appendix A

The matrixes D and Z in Eq. (18) are defined as

0 0 0 0 0 1 0 0] 00 0 00 0 0 07
00 0 0 1000 00 0 00000
00 0 0 0O0T10 00 Cop 0000 O
D:010000007Z:00010000 (A1)
Ci 0 Cn —C;3 0 0 0 0 00 0 01000
00 0 0 0001 00 0 00100
Ci» 0 Cp» —Cy 0 0 0 0 00 0 000T10
[Cis; 0 Cy C;3 0 0 0 O] 00 0 000 0 1]
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where
0.5 0.5 0.5
Cny = / wdl, Cp= / u @, dl, Cpi= / o {dl
~0.5 -0.5 -0.5
0.5 0.5 0.5
Cxn Z/ u@rdl, Cxn Z/ up,Ldl, Cy= —/ o Pd¢ (A2)
~0.5 ~0.5 ~0.5
0.5 _
: do
Coo = / o < ") dC
v s O\l
The matrix L and vector R in Eq. (23) are defined as
L=L-LeL2/Ly, R =R~ (R/Ly)Ls (A3)

where L is an 8 x 8 matrix by setting zero the elements on the sixth row of the matrix L, R and L. are 8 x 1
columns by setting zero the sixth element of R and L., respectively.

Appendix B

It is well-known that there exists an exact elasticity solution of a simply supported orthotropic plate in
cylindrical bending (Pagano, 1969). It can be used as a benchmark solution for clarifying any two-dimen-
sional simplified theory or numerical method. The basic elasticity equations can be readily converted into
state space formulations in a routine way (Bahar, 1975; Fan, 1996; Chen and Lee, 2004). The state vector is
composed of two displacements and two stress components and it can be expanded as:

U (BS)
w @ wo({) sin(BE)
(BS)

_ 9 (B1)
[ Cas | 10(C) cos(Bé
[ UO(C) Sln(ﬂé)
Then the state-space equation is
U 0 _ﬂ é 0 Uuoy
] = wf 00 —LpN| T
%0 0 0 B 0 90
and the other two stress components are determined by
G —Poyug —I—%o’o
{ ) } -4 = L sin(pe) (B3)
Oy Cag | —Povuy + % 0o

By virtue of the continuity conditions of state variables at each fictitious interface in a laminated model
as well as the boundary conditions on the top and bottom surfaces, the state vector can be determined.
More details can be found in Bahar (1975), Fan (1996), Chen et al. (2004b), and Chen and Lee (2004)
for examples.
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